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LE'lTER TO THE EDITOR 

Stochastic equations for gauge fields 

Z Habai 
Research Center Bielefeld-Bochum-Stochastics, Bielefeld University, D-4800 Bielefeld 1, 
FRG 

Received 6 August 1985 

Abstract. We derive stochastic differential equations for pure Yang-Mills theory in four 
dimensions and for the three-dimensional Higgs model, which are random perturbations 
of the instanton equations. 

The conventional functional quantisation of gauge theories is plagued by the infrared 
problems. It appears that for the resolution of these problems a better understanding 
of some classical aspects of the Yang-Mills theory is needed. We suggest a description 
of quantum fields in terms of stochastic equations as a tool for a study of these 
semiclassical problems. 

In order to illustrate some aspects of the stochastic description consider first the 
(imaginary time) quantum mechanics on a Riemannian manifold M. Assume that M 
is a compact matrix Lie group G. Then, the Brownian motion on the group is described 
by the equation 

g-' dg = d b (1) 

where b is a matrix from the Lie algebra L(G) of G with matrix elements being 
independent Wiener processes 

E(b,(t)b,,(t')) = SikSjl  min(t, t ' )  (2) 
and dg denotes in this paper the Stratonouitch differential (Ikeda and Watanabe 1981). 

Let H be a subgroup of G. Consider the fibre bundle T :  G +  G/H, where G / H  is 
a symmetric space. We can write g = uh, with h E H and U E G/H. Let P, be the 
projection on L(G)-L(H), then the Brownian motion U, on the coset G/H can be 
obtained from (1) by means of the projection 

U-' du = hP, db h-' h-' dh = (1 - P,) db. (3) 
Consider S 2  = SU(2)/U(1) as an example. From (3) we can get an equation for the 
sphere S2  (It0 1975) 

dni = P ( n ) u  db, (4) 

P (  n) 11 .. = 6.. v - n.n. I I / n 2  

where 

and n2 = C nini. 
I 
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Equation (4) may be considered as an equation for n E R 3 ,  whose solutions stay on a 
submanifold S 2 c  R 3 .  In fact, from (4) it follows that ni dn, =0, hence nz = constant, 
because P (  n) projects the vector db E R3 onto the tangent space (TS'),. Note that 
P(n) is the metric on the sphere inherited from the flat metric of R 3 .  

The Euclidean quantum field n , ( x )  E S2 can be treated as a Brownian motion on 
the manifold of maps R + S 2 .  We have obtained a stochastic equation for such a field, 
which can be expressed in the form (Haba 1985a, b) 

dn '=p( r~ )~~a ,n '  d t + P ( n ) ,  db' ( 5 )  

where b, is the Wiener process with values in L'(R) (see equation ill)), p i j  = & i j k n k / n  

projects onto the tangent space of the sphere ( p 2  = P )  and a,nj is the Killing vector 
corresponding to the translational invariance of the L2 metric. The addition of a Killing 
vector K to the stochastic equation on M ensures that the solutions still stay on M, 
and moreover, the expectation values of functionals invariant under the isometry 
generated by K are independent of K .  

Consider now a principal fibre bundle T :  P+ M with a group G as the fibre. Let 
W be the space of (irreducible) connections w on P and % an infinite dimensional 
Lie group of gauge transformations 

w + w g  = g-'wg + g-' dg. ( 6 )  

Consider the coset At = W/%. Then, T :  W + A is a principal fibre bundle with the 
group % as a fibre (Babelon and Viallet 1979, Singer 1981). W is an affine space; the 
tangent space TB to W can be identified with the Hilbert space A' of L(G)-valued 
1-forms A on M with the scalar product (A, B )  = Tr A A *B. The vertical subspace 
VA of ( TW)A is defined as the tangent space to the orbit ( 6 )  of %, i.e. VA = {VAA ; A E A'}, 
where V A  is the covariant derivative and A' is the space of L(G)-valued functions on 
M. If we define the horizontal subspace HA c ( Z33)A as the orthogonal complement 
of TB with respect to the scalar product (,), then this definition of HA determines 
the connection form SZ on 93, SZ = (VT,V,)-'VT,. The connection allows us to identify 
HA with ( TA)rl(A) and embed A as a submanifold in W. In particular, the metric in 
3 is projected to the metric g in A, i.e. if X ,  YE ( then g?,(A)(X, Y )  = (2, ?), 
where 2 denotes the horizontal lift of X .  If and F are arbitrary vectors in (TB),, 
then their horizontal parts correspond to vectors X and Y in ( TA) with the scalar 
product 

(7) grl(A)(X, y ,  = (x, PAP) 

We are looking for stochastic equations, whose solutions determine a stochastic process 
A, such that the (functional) probability measure corresponding to the process A, is 
of the form 

d p  - [dA] exp -a Tr F,,F,, ( I  1 
where Fpy is the coordinate expression of the curvature of w. If the measure (9) is to 
be finite, then the integral [dA] has to be restricted to the manifold A of orbits, because 
Tr F2 is constant on the orbit of the gauge group 3. For the same reason the process 
A, must be defined on A. Note that we have a similar situation in the case of the n 
field (4), where the Lagrangian is independent of the radial coordinate of n E R3.  
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We are going to generalise (3)-(5) to A, i.e. to find a stochastic equation for A E  93, 
whose solutions stay on a submanifold ~6 being an embedding of A in 9. If the curve 
A, is to be the lift to 93 of IT(A,) E JU with respect to the connection R = (V*,v~)-'v*,, 
then its tangent dA,/dt must be an element of HA. Hence, an analogue of (4) has the 
form 

dA, = P A  d b, 

E(by(x)b:,'(x')) = SQa'S(x-x') min(t, t'). 

(10) 

(11) 

where PA is defined ih (8) and 6, is the Wiener process with values in L 2 ( R 3 )  x L(G) 

Equation (10) can also be expressed in a form analogous to (3) as an equation in the 
fibre bundle IT: 93 -$ 93/ % 

dwg = g-' dbg g-' dg = R  db (12) 

here cog (6) represents 93 as a manifold of fibres and the action of the connection form 
R on a vector determines an element of L( %), R db = (V*V)-'VT dbi. 

We may still add to (10) a Killing vector corresponding to an isometry of the metric 
(7). Let us note that the scalar product (7) is invariant under Euclidean rotations of 
the vector potential Ak. It is also invariant under a translation of the fibre in the 
associated fibre bundle (with the adjoint action of 3 on the fibre L(G)) ,  i.e. under the 
transformation 

A(X) + exp(iAk(x)Axk)A(x+ AXk) eXp(-iAk(X)AXk). 

The generator P k  of this isometry has the form jVkAjS/GA,. Now, the commutator 
x k  [Rk,  P k ]  (Rk is the generator of the rotation around the kth axis) is equal to 
j &&k 6/ 6Ai. The addition of this Killing vector to (10) leads to the equation 

(13) 

where *Fi = + E & &  For dimensional reasons there should be the square root of the 
Planck constant h in front of the noise term in (13). Hence, in the limit h+O (13) 
becomes the instanton equation in the temporal gauge. 

Consider now the functional measure dp(A)  corresponding to the solution of (13). 
Let dpo(A) be the functional measure corresponding to the solution of (10). Then, 
according to the Girsanov formula (Ikeda and Watanabe 1981), the measure d p ( A )  
has the form 

dA, = * F  d t  + P A  db, 

dp(A)=dpo(A)exp(-$ /  P;"FP;'*Fdxdt+j P;'*Fdbdx) 

(14) 

is the topological charge. 
In the derivation of (14) we made use of the horizontality of * F  (i.e. PA*F = * F) 

and we expressed P A d b  by dA from (10). Note that because of Tr G*F/6A=O the 
Ito and the Stratonovitch integrals in (14)-(15) coincide. 
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In order to find the functional measure dpo(A) corresponding to the solution A, 
of (10) we need to derive the short time propagator p ( A t ,  A, dA‘) describing the Markov 
process A,. Then, dpo(A) is a product of the short time propagators. In the finite 
dimensional case it is known that (Molchanov 1975) 

p(At, n, dn‘) = (2nt)-’ dv(n’) exp[-(n - n ‘ ) P ( n ) ( n  - n ’ ) / 2 A t ]  (16) 

where dv(n)  is the Riemannian volume element on the sphere (in spite of the fact that 
(4) is expressed as an equation for n E R 3 ) .  A formal extension of the arguments 
leading to (16) shows that for the stochastic process (10) P( n )  + PA and dv( n) + dv(A), 
where dv(A) is the Riemannianvolume element on A. In the Coulomb gauge (akAk = 0) 
we have (Babelon and Viallet 1979) 

dv(A) =dA(det V:VA)-”* det a*VA. (17) 

Equations (16)-( 17) are confirmed by lattice calculations. The configuration space of 
the lattice gauge theory is a Cartesian product of groups attached to each bond b of 
the lattice. Then, the space of orbits A is IIb GJ%, where %? is the group of gauge 
transformations on the lattice. The transition function p on the coset A can be obtained 
(Dowker 1972) from the transition function pG on I I b  Gb 

If we introduce the parametrisation g = exp A and assume that for small t only small 
A (and h close to identity) are relevant, then we get from (18) the equations (16)-( 17) 
(with P ( n )  + P A ) .  

The functional measure d p  resulting from (14), (16) and (17) leads to the conven- 
tional functional integral in the Coulomb gauge (Faddeev and Popov 1967) with the 
topological charge (15) added to the Lagrangian. Equation (13) in the temporal gauge 
(without PA) has been obtained earlier by Nicolai (1982). We think that the projection 
PA of the noise db in (13) is necessary for consistency of the equations and for the 
fulfilment of the Gauss law. We find that Nicolai’s fermionic determinant is absent. 
This has also been pointed out by Claudson and Halpern (1985). However, their 
argument is not satisfactory, because it applies to the model of scalar fields (Parisi 
and Sourlas 1982, Cecotti and Girardello 1983) with a wrong conclusion. We have 
discussed in detail the problem of fermions and the applicability of the Girsanov 
formula in our earlier paper (Haba 1985b). Stochastic equations for gauge fields were 
studied previously by Asorey and Mitter (1981). These authors treat the spatial part 
of the Lagrangian as a potential and choose coordinates for A. The introduction of 
coordinates for the Brownian motion on the sphere (equation (4)) was discussed by 
Ito (1975). We expect that Ito’s procedure applied to the Yang-Mills field leads to 
the Hamiltonian of Christ and Lee (1980). 

Equation (13) is a random perturbation of the instanton equation. We believe that 
geometric techniques developed for instantons will be fruitful in application to the 
stochastic equations. In Yang’s complex coordinates (Yang 1977, Corrigan et a1 1978) 
equation (13) takes the form ( 6 ( t ,  x) = (d/dt)b,(x)) 
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where 

Consider new field variables (g, Bi) (where gEGL(n, c)) related to Bi through the 
complex gauge transformation (Bb = 0) 

By = g-'a,g, B, = g-'B:g + g-'a,g. (21) 

Then, equation (19) reads 

a,B;= g(62-idl)g- '-~y(g-1Ag).  

Inserting the solution of (22) into (20) we notice that the A dependent terms cancel. 
So, we get a simple linear perturbation by noise of Yang's equations for the matrix g. 

By means of the dimensional reduction (Taubes 1980) we can get from (13) the 
two-dimensional Abelian Higgs model (with cp4 interaction) discussed in our earlier 
papers as well as a non-Abelian Higgs model discussed by Brink et a1 (1977). In three 
dimensions the dimensional reduction of (13) leads to the equations 

where 9 = (V*V + cpcp)-', b' and bj are independent Ad L(G)-valued Wiener processes 
and the multiplication by scalar fields is defined by the adjoint action in L(G).  

Equations (23) describe a perturbation of the Bogomolnyi equations for monopoles 
by the horizontal noise (the vertical space is defined by the infinitesimal gauge transfor- 
mations 6A = VAA, 6cp = cph). The functional measure corresponding to the solution 
of (23) describes the Higgs model, where fermions (resulting from the Jacobian) interact 
with gauge and scalar fields. The model (23) is ultraviolet finite (even the Wick 
counterterms cancel each other), hence more amenable to the constructive approach 
than the pure Yang-Mills theory in four dimensions. 

I wish to thank Professors S Albeverio, Ph Blanchard and L Streit for their invitation 
and warm hospitality extended to me during my stay at the Research Center Bielefeld- 
Bochum-Stochastics (BiBoS) and Center for interdisciplinary Research (ZiF) (Bielefeld 
University). 
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